

Context Tracking Working Group

Augmented Cognition Workshop June 14, 2001

What is Contextual Information?

- Information relevant to one's actions
- Information about a situation useful for computers to determine how to act:
 - turning on the lights, lowering TV volume
 - displaying relevant information
- Sometimes these two types of contextual information are the same.
- Yet, there's a subtle meaning of context that suggests
- "Context" implies
 - situational variability
 - information about people, places, informationartifacts, devices, tasks, goals

What is Context?

- Context is or should be layered
 - Primitive facts about context
 - Artifacts richly carry context
 - Task models & frameworks for thinking
 - Problems and goals
 - Individuals and groups

Three main points

- 1. Create an information architecture for representing context
 - Primitive (and simple) units of information
 - "Deep" knowledge of context occurs through layering.
- 2. Solving the hard problems
 - A little context goes a long way
 - Let the solutions evolve out of an information architecture for context
 - Pay attention to the artifacts the user creates directly or indirectly.
- 3. Research communities
 - Bring on: MultiModal, User modeling (Al/HCI),
 Cognitive Task Analysis (in a computational form)
 - Learn from: Computational Linguistics, Intelligent Tutoring Systems

Starting Point: Context Tracking

- A. Modeling context
 - What is a "model" of context?
 - How do we create one dynamically?
- B. Monitor users tasks and infer what they are doing from context
- C. Responsiveness to context to support user

The Context Machine

The Great Context Repository & mechanisms

- Baseline: Human-driven "Knowledge Warrior"
- Collects and serves contextually relevant information
- Measures of Performance & Effectiveness
 - Anticipation Ratio
 - Relevance Ratio
 - Effort Ratio

Current Context Success

- TiVo
 - Low effort direction
 - Anticipatory heuristic choices
- Amazon
 - User profiling for relevance, low effort
- Auto Navigation
 - Location, location, location
 - Autocorrection and saved routes
- Google
 - Anticipatory heuristic search
 - Adaptation based on information space and usage

Research Areas

- Sensing Problems
 - Collect context-relevant facts about environment
- Analysis Problems
 - model tasks / people / environment to interpret context
- Action Problems
 - act on analysis to augment cognition of warfighter (present info, manage people's tasks, perform tasks)

Sensing Problem

- Sensing Individual
 - physiology
 - tasks
 - goals
 - preferences
 - environment
 - information individual creates (thoughts)
 - Individual's decision-making framework

Research Problems

Develop approaches

- to representing sensory information, symbolic representations of context, and mechanisms to map one to the other.
- a single representation and storage approach to treat all this contextual information equally
- to maintaining disconnected and/or disparate contexts and yet reconcile them when connected

Develop approaches to:

 How do we visually represent contextual information for use by people?

Engagement Matrix

- Framework for representing engagement context
- Models Sensory Problem Environment
 - uses association and probability
 - Models own problem environment
 - Models enemy problem environment
- Presentation of context state in a matrix

Sensing Problem

- Sensing Group
 - group dynamics
 - group goals
 - communication among group members

Shared Frames

- Shared domain of discourse
- Real-time two-way information sharing
- Coordination of public and private views

Sensing Problem

- Sensing Problem Environment
 - Higher level
 - Meteorology
 - Databases of events, reports, encyclopedic information (e.g. port specs)
 - Battle events, histories, plans

Analysis Problem

- Heuristics for interpreting context
- Cognitive Task Analysis
- Encoding/Modeling characteristics of
 - adversary
 - individual
 - modeling group
 - modeling expert
 - modeling problem environment
 - physiological model

Action Problem

"Take advantage of context mapping algorithms to assist decision-makers in making better quality decisions faster, develop methods and algorithms that function as real-time automated Radar O'Reilly's"

Research problems

- Automated/interactive presentation
 - When to present information to keep context
 - How to present information in context based on cognitive principles
 - Channel selection based on cognitive principles
- Managing Workflows
 - Communicating to others
 - Allocating Resources
 - Tracking workflow progress